All Your Mining Needs
Welcome, please Sign In or Register

Cyanide Chemistry

Cyanide Species
The term cyanide refers to a singularly charged anion consisting of one carbon atom and one nitrogen atom joined with a triple bond, CN - . The most toxic form of cyanide is free cyanide, which includes the cyanide anion itself and hydrogen cyanide, HCN, either in a gaseous or aqueous state. At a pH of 9.3 - 9.5, CN- and HCN are in equilibrium, with equal amounts of each present. At a pH of 11, over 99% of the cyanide remains in solution as CN-,while at pH 7, over 99% of the cyanide will exist as HCN. Although HCN is highly soluble in water, its solubility decreases with increased temperature and under highly saline conditions. Both HCN gas and liquid are colorless and have the odor of bitter almonds, although not all individuals can detect the odor.
Cyanide is very reactive, forming simple salts with alkali earth cations and ionic complexes of varying strengths with numerous metal cations; the stability of these salts is dependent on the cation and on pH. The salts of sodium, potassium and calcium cyanide are quite toxic, as they are highly soluble in water, and thus readily dissolve to form free cyanide. Operations typically receive cyanide as solid or dissolved NaCN or Ca(CN)2. Weak or moderately stable complexes such as those of cadmium, copper and zinc are classified as weak-acid dissociable (WAD). Although metal-cyanide complexes by themselves are much less toxic than free cyanide, their dissociation releases free cyanide as well as the metal cation which can also be toxic. Even in the neutral pH range of most surface water, WAD metal-cyanide complexes can dissociate sufficiently to be environmentally harmful if in high enough concentrations.
Cyanide forms complexes with gold, mercury, cobalt and iron that are very stable even under mildly acidic conditions. However, both ferro- and ferricyanides decompose to release free cyanide when exposed to direct ultraviolet light in aqueous solutions. This decomposition process is reversed in the dark. The stability of cyanide salts and complexes is pH dependent, and therefore, their potential environmental impacts and interactions (i.e. their acute or chronic effects, attenuation and re-release) can vary.
Metal cyanide complexes also form salt - type compounds with alkali or heavy metal cations, such as potassium ferrocyanide (K4Fe(CN)6) or copper ferrocyanide (Cu2[Fe(CN)6]), the solubility of which varies with the metal cyanide and the cation. Nearly all alkali salts of iron cyanides are very soluble, upon dissolution these double salts dissociate and the liberated metal cyanide complex can produce free cyanide. Heavy metal salts of iron cyanides form insoluble precipitates at certain pH levels.
The cyanide ion also combines with sulfur to form thiocyanate, SCN-. Thiocyanate dissociates under weak acidic conditions, but is typically not considered to be a WAD species because it has similar complexing properties to cyanide. Thiocyanate is approximately 7 times less toxic than hydrogen cyanide but is very irritating to the lungs, as thiocyanate chemically and biologically oxidizes into carbonate, sulfate and ammonia.
The oxidation of cyanide, either by natural processes or from the treatment of effluents containing cyanide, can produce cyanate, OCN-. Cyanate is less toxic than HCN, and readily hydrolyzes to ammonia and carbon dioxide.

Quantity Part No Name Std Pk  unit 
0510010100 Benzyl Cyanide 1 EACH
0510010101 Use in Mining 1 EACH
0510010102 Use in Mining 1 EACH
0510010103 Environmental & Health Effects 1 EACH
0510010104 Environmental & Health Effects 1 EACH
0510010105 Sampling & Analysis 1 EACH
0510010106 Sampling & Analysis 1 EACH
0510010107 Sampling & Analysis 1 EACH
0510010108 Cyanide References 1 EACH